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Abstract

Analyzing human movements via camera based 3D-tracking has reached a turning point

recently. The conventional method of motion tracking is based on retro-re�ective mark-

ers, that are placed on the applicants body to highlight important points. It is being

relieved by a newer approach with a camera based marker-less silhouette tracking to an-

alyze movements easier and quicker. One major problem of this silhouette method is the

tracking of rotations in body-parts, where the silhouette hardly changes, e.g. the upper

and lower arm or the upper and lower legs. The solution discussed in this thesis is based

on inertial measurement units, that are able to measure rotations when placed on body-

parts. Furthermore the sensors are analyzed in their behavior towards the magnetic

�eld and problems such as an o�set in z-direction are discussed. After the integration of

sensor-data in 3D-tracking programs (Simi Motion and Simi Shape) the data was pro-

cessed and used to support silhouette tracking. Therefore sensors were placed on pelvis,

thorax, upper arm right, lower arm right and wrist right and their rotations recorded.

Sensor-data was compared to marker data from the same movements by the means of

a correlations coe�cient calculated with Spearman's rule. To validate the sensors data

and the consistency of the outcome, a golf swing and a tennis forehand/backhand was

recorded with the same set-up during two di�erent days of capture. Markers were placed

based on the same model on the applicants body and the movements were recorded with

an eight camera system. Both marker data and IM-sensor data was then compared to

each other. In a second step, marker- and IM-sensor-data was used to support rotations

in the tracking process of the silhouette method. Those hybrid-trackings no longer con-

sist of data from solely one method, but two methods mixed with each other. Results of

the study show, that the integration of IM-sensors into silhouette tracking can work as

good as marker-based tracking if the sensors behave well. On the other hand the sensors

do not behave in the same way during both captures, meaning that only recordings of

day one were correlating strongly to marker data. IM-sensor data of day two did not

correlate in a strong way but only weak or no correlations were calculated at all. A

possible reason to this problem was found to be the inconsistent magnetic �eld which is

a�ected by electrical devices and ferric surroundings. Although nothing changed visually

during both captures, only one capture resulted in good data. Concluding the thesis,

IM-sensors can be integrated and used in 3D-tracking programs and support silhouette

tracking in a hybrid way as good as markers, if the sensors work well. That is, the use of

the sensors has to be viewed critically, especially if consistent accurate data is needed.
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Part I.

Introduction and Motivation

1. Introduction into the �elds of movement

applications

This section will give a brief overview of background information concerning this thesis.

1.1. Evaluation of marker-less tracking

Technology in motion capture seems to have reached a turning point in recent years,

merging from marker-based applications in various �elds to marker-less applications.

One signi�cant example is Microsoft's kinect system, to replace the outdated controller

with a camera based motion capture device. It helps selecting options in the menu

through gesture detection or is used in-game. Apart from changes in the gaming indus-

try, motion capture and furthermore movement analysis is also shifting in many clinical

applications and sports medicine. However a recent study shows, that a single-camera

system like the kinect is not suitable for a motion analysis that relies on high qual-

ity data and high accuracy.[5] Like the marker-based version, marker-less applications

commonly use a four to eight eight camera system. In the case of Simi's 'Shape', a

silhouette-subtracting algorithm calculates position and movement of body parts during

a movement analysis [6, p.21] Other than marker-based systems, 'Shape' is not in need

of any marker or sensor placement and thus does not need any extra time for marker

placement nor is it prone to any placement errors. A latterly study on the compar-

ison between marker-based and marker-less movements shows, that angle di�erences

above a Range of Motion [ROM] of 5◦ in all joints show correlations between 70 and

100 percent. This excludes ankle eversion/inversion and abduction/adduction as well as

shoulder rotation and elbow �exion/extension, where the angles hardly correlate.[7]

1.2. Evaluation of IMU-based tracking

Especially in astro-navigation and avigation, inertial measurement units [IMUs] have

a long history to look upon. A rudimentary version was already used in the second

World War, where it could estimate position and heading of V2-rockets.[8] The system
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1. Introduction into the �elds of movement applications

was later on used not only in military- or astro-systems but also in avigation and naval

navigation. One well-known example is the Delco carousel, that was installed in the

inertial navigation systems [INS] of the early Boeing 747-100, -200 and -300 versions.[9]

Those IMU-systems used gimbals, which contained expensive precision parts and a set

of three rings, attached to each other in an 90◦-angle. This construction with the sen-

sor placed in the middle of the inner ring, makes a rotation around any axis possible.

Alongside the high costs, this setup had a restriction called gimbal lock. Here, two rings

are aligned to each other, making a rotation around the third axis coincide with another

axis. A solution to this problem is a 'strapped-down' system, in which the sensor is

connected directly to the vehicle. This system not only eliminates the problem with

the gimbal lock, but is also much more cost e�cient and can be used in much smaller

sizes. Like marker-less tracking, IMUs are starting to become more and more recognized

in clinical-applications and especially sports medicine. These matchbox-sized sensors

are easily attachable to body-parts or any piece of sports equipment and can measure

position, accelerations and rotations.

1.3. Motivation and aim of thesis

Aim of this thesis is to analyze and integrate IMU sensors in an already existing motion

capture and analysis software. The sensors are then validated via two di�erent sets of

movements in the two programs 'Motion' and 'Shape' to see, if their collected data is

better, equal or worse than the data collected with 'Motion' and 'Shape'. For a better

lucidity, this thesis will be seperated into three major parts. Part I will cover everything

that is connected to the IMU-implementation into Simi Motion. Part II will then use

the progress and knowledge of part I to focus solely on the implementation of the IMUs

in Simi Shape. Part III will summarize parts I and II and conclude the thesis. For this

thesis the IMU-sensors from Delsys were used.

1.3.1. Motivation for an implementation of IMUs in Simi Motion

Although the integration and hybrid-use of sensors in 'Shape' seems more interesting,

an implementation of the sensors in 'Motion' is of vital use. Not only does the software

already have an data-acquisition tool, that is synced to the camera capture, but also does

'Shape' use the room-calibration, recorded and executed in 'Motion'. Any data, that is

used in 'Shape', will �rst be recorded and sometimes even edited in 'Motion'. Therefore

an implementation of the IMUs in 'Shape' does not work without �rst implementing

14



1. Introduction into the �elds of movement applications

them in 'Motion'. In addition to that 'Motion' o�ers another advantage: it has the tools

to calculate inverse kinematics solely from the IMUs, without any marker-placement or

camera-recording. Summing up, 'Motion' is not only needed for 'Shape', but can also

record either markers and sensors hybrid, or also solely markers or sensors.

1.3.2. Motivation for an implementation of IMUs in Simi Shape

As introduced in section 1.1, marker-less tracking is becoming a game-changer in future

motion analysis. The ability to also use the system outdoors with less needed time for

preparation makes 'Shape' an important feature in all current �elds of application. One

problem that 'Shape' still faces is to record rotations of shoulder and elbow, as well as

inversion/eversion of the ankle. That is due to the fact, that during those movements,

the actual shape of these body-parts hardly changes. A possible solution to this problem

could be IMU-sensors, as are they able to record position and rotations of the segments,

they are attached to. This additional part of information could help 'Shape' to interpret

certain movements or stabilize the tracking of other body-parts like the feet or the hip.

This hybrid tracking version is still in no need of any additional markers and can also

be used in outdoor-settings.
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Part II.

Implementing IMUs into Simi

Motion

2. Theoretical approach

This chapter will focus on the theoretical aspects of the thesis. It will cover all the

background-information of the di�erent systems used and describes the theory behind

the methods.

2.1. Simi Motion marker-based tracking

Simi's software 'Motion' is a multi-functional tool to capture di�erent sets of data and

process them for further use either in other programs such as 'Shape', or to output

the data in reports. The most important feature is the camera-based capture with up

to eight cameras in conventional setups. Special setups might require more cameras,

which is only a matter of hardware and thus not mentioned any further. The cameras

have ring-lights mounted on top of them, casting light-emitting diode [LED]-light in the

direction, the camera is pointing at.

Figure 1: high end matrixvision camera with a mounted ringlight

The subject to be recorded is wearing retro-re�ecting, spherical markers, that are

attached via adhesive tape to certain points of his body. The LED-light coming from
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2. Theoretical approach

the cameras is re�ected by the markers and captured by the cameras. The cameras

have to be set up in such a way, that during every movement, every marker can be seen

from at least two cameras. [10, p.31] Otherwise the computer can not calculate the

3D position of the marker. The System is calibrated with a L-shaped frame with four

markers attached, as well as a wand with three markers attached. The markers on the

L-frame give information about the global coordinate system, used during marker-based

and marker-less capturing. The long leg of the 'L' points in y-direction, the short leg

in x-direction. This information will then be calculated in the computer to create the

z-axis perpendicular to both legs pointing in the air. The information of the wand is

used to distort the cameras in the area of movement. Therefore the distance between the

three markers will tell the computer, which distances there are in the area of movement.

Figure 2: Tools for calibration: Wand and L-frame [1, p.104]

2.1.1. marker placement

Markers are used to calculate estimate forces and torques in each segment of the human

body with the method of inverse dynamics. Therefore the human body is divided up into

16 segments, which are: foot(Left [L]/Right [R]), shank(L/R), thigh(L/R), wrist(L/R),

lower arm(L/R), upper arm(L/R) as well as head, upper and lower torso and pelvis. All

segments are connected with joints. With a prede�ned marker-set, marker positions and

orientations can be determined with the video-images captured. The inner forces and

torques can then be calculated from this information. [1, p.347] [11] The markers also

inform, where each joint is positioned, as well as the center of gravity [COG] of each

segment. Those centers are used as the origin of the segment's local coordinate system.
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The joint-centers of ankle, knee, elbow and wrist are located right in the middle of each

joint's medial and lateral marker. Joint-centers of hip and shoulders are calculated with

a di�erent, more complex method described by Bell, et al. [12] and De Leva [13]. Like

the segments, joints have local coordinates, too. They are based on standards from the

International Society of Biomechanics [ISB]. In this study a full body, inverse kinematics

marker-set was used.

Figure 3: Marker positions in the inverse kinematics model

2.2. IMU-based tracking

As mentioned previously, IMUs from Delsys were used in this thesis. The Inertial mea-

surement [IM]-feature of these sensors is a recent add-on to the already existing Elec-

tromyography [EMG]-function. As those sensors have been integrated into Simi's Motion

software a longer time ago, the change to an integration of the additional IM-feature

was less work, than to integrate a whole new sensor. Like mentioned in section 1.2.,

the sensors are a strapped-down version of their older gimbal-precursor. The IM-sensors

record three di�erent data types from three di�erent sensors, that can be converted into

di�erent forms of rotation-matrices, such as quaternions or the pitch-roll-yaw [pry] data.

The three di�erent sensors within the IM-sensor are: one gyroscope, one accelerometer

and one magnetometer. Each sensor collects data in x-, y- and z-direction, which equals

a total of nine data-channels.

The gyroscope measures rotation angles around its internal x-, y- and z-axis. The

accelerometer collects accelerations of the sensor but cannot collect gravitational accel-

erations. The magnetometer collects information about the magnetic �eld, the sensors
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is used in. [14, p.3]

2.2.1. Rotations

For this set-up quaternions were recorded, which contain four channels of information.

They are divided in one real path which has information about the orientation, as well as

three imaginary paths, that give information about the rotations around x-, y- and z-axis.

These four dimensional rotations are used, because they have one extra set of information

about the orientation, compared to the special orthogonal group [SO(3)], which is used

in Simi Motion or any other three dimensional rotations such as euler angles. This

circumvents the problem of gimbal-locks, where two rotation-axis fall together.

For example, if a plane would pitch 90◦, its roll-axis(x) and the gravitational-axis (yaw

= z) fall together.

If in this setup, the plane rotates around its roll-axis, both yaw and roll look alike and

can therefore not be separated anymore.[15, p.114-118] [16, p.3]

IM-sensors have two di�erent sets of coordinate systems, in which they express rota-

tions: an internal one, that has its y-axis pointing in the direction of the arrow on the

sensor, its x-axis pointing perpendicular to y to the right, leaving the z-axis pointing

perpendicular to x and y in the air. The second coordinate system is used as a reference

system and is, other than the internal coordinate system, stationary. This system is

the East-North-Up [ENU]-coordinate system, with x pointing towards the global East,

y pointing towards the global north-pole and z pointing perpendicular to x and y in the

air. [17] Rotations are then calculated as rotations around the internal axis in relation

to the ENU-system.

Simi Motion works with rotations in the SO3-format of the Lie-algebra, so a standard

transformation from quaternions into SO(3)-format is performed automatically, when

the sensor-rotations are imported. [1, p.245]

2.3. Combining IM-sensors with 'Motion'

Aided by the previous section on the basic knowledge of how Motion and IM-sensors

work, this section will focus on the theoretical aspects connected to the combination of

IM-sensor data acquisition and the software component 'Motion'.
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2.3.1. Coordinate Transformation

As described in section 2.2.1., IM-sensors use two di�erent coordinate systems to express

rotations. Rotations are recorded as rotations around the IMUs internal coordinate

system in reference to the global ENU-coordinate system.

Rotations (in this case segment rotations) in Motion are also described as rotations

around an internal coordinate system compared to a global coordinate system. The

di�erence is, that segment- or joint-rotations are calculated with markers in the inverse

dynamics calculation as rotations around the segment/joint coordinate system compared

to the global coordinate system in Motion. This global coordinate system is de�ned by

the L-frame during calibration and can vary from setup to setup depending on move-

ment direction and therefore L-frame-placement. So not only the sensor compared to

the segments/joints has a di�erent internal coordinate system, but also the reference

coordinate systems di�er. So if sensors are placed on the human body alongside markers

for a recording, two di�erent sets of rotations are recorded, although the subject only

performs one move.

In order to get the same set of rotations, the systems have to be transformed, so that

in the end both methods use the same internal and global coordinate system. There are

two solutions to this problem: using the ENU-coordinate system as the common global

system or using 'Motion's' coordinate system de�ned by the L-frame during calibration.

This means either the L-frame has to be set for every calibration to point to the north

or the IM-sensors have to be geared to the L-frame.

For practical reasons, that will be in presented in section 3.4., solution two is used in

this thesis. That is the L-frame will be used as the global coordinate system.

2.3.2. Zero positioning

Once the global systems are aligned, both markers and IM-sensors use the same reference

but still have di�erent internal coordinate systems. Measurements show, that IM-sensors

have their point of origin, when lying �at on the ground, all axis being aligned with their

global coordinate system. The internal coordinate system of all segments and joints have

their point of origin, when the subject stands in the anatomical neutral position, facing

in the y-direction of the L-frame.

So just by placing the IM-sensors on their assigned segments will not record the

same rotations. The internal coordinate systems have to be transformed like the global

coordinate systems. In this thesis the IM-coordinate system is transformed into the
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joint-coordinate system. From this point on this procedure is referred to as "zeroing"

or "zero-positioning"

2.4. Basic anatomy

2.4.1. Anatomical axes and planes

The anatomy uses three major body-axes to describe orientation and position of any

segments. All axes meet in an idealized Center of motion [COM]. They are:

• Longitudinal-axis: y-axis of the body, going from cranial to caudal or the other

way around.

• Sagittal-axis: z-axis of the body, going through the body from back to front.

• Transversal-axis: x-axis of the body, going from either the COM towards the left

or right half of the body or from the left body half of the body to the right half of

the body.

Figure 4: Three planes of the body [2]

Two axes span one plane, which leads to the three body planes:

• Frontal-plane/Coronal-plane: longitudinal- and transversal-axis form this plane

• Sagittal-plane: both sagittal- and longitudinal-axis form this plan which divides

the body into two symmetrical halves
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• Transversal-plane: transversal- and sagittal-axis span this plane, which divides the

body in upper and lower body.

2.4.2. Human joints and their movement possibilities

In the human body, bones are connected to each other through joints. Muscles are

attached to the bones through tendons and enable movements. Joints can be divided

into two major groups, the real joints, also called diarthrosis or synovial-joints and false

joints, also called synarthrosis. Only real joints have a joint space and three characteristic

features.

• Joint cavity: synovial �uid inside the joint space

• Joint capsule: a �brous capsule around the joint, that protects the joint and

prevents the �uid from pouring out.

• hyaline cartilage: cartilage around the bone ends that form the joint

There are six major joint types which can be divided into three classes depending on

their degrees of freedom. Ball joints are the only joints that can move anywhere, as they

have three degrees of freedom. Condyloid joints as well as plane joints and saddle joints

form the second group with only two possible degrees of freedom. In the third group

there are hinge- and pivot-joints, which only have one degree of freedom. Figure 5 shows

all six joints with possible examples in the human joint system.
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Figure 5: Examples of the six synovial joints in the human body [3]

Joint-movements are called di�erently according to which axis they rotate around.

Movements around the sagittal-axis in the frontal-/coronal-plane are called ab-/adduction,

movements around the transversal-axis in the sagittal-plane are called �exion/extension

and �nally rotations around the longitudinal-axis in the transversal-plane are called

inversion/eversion. Figure 6 shows all possible movements.

Figure 6: possible joint movements [4]
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2.5. IM-sensor based problems and their solutions

As mentioned in sections 2.3.1. and 2.3.2. the IM-sensors use di�erent coordinate

systems than 'Motion' and thus have to be transformed. This procedure is not only a

mathematical problem but also a practical one, because 'Motion' only o�ers a solution

to one problem.

In addition to that, the IM-sensors manifest various issues, that have to be solved in

advance, to ensure correct data acquisition.

2.5.1. Z-o�set: background information

One of the biggest issues, the IM-sensors have, is an inexplicable o�set in z-direction. It

was mentioned earlier, that each sensor has its point of origin, when being aligned with

the ENU-coordinate system. That is, they are lying �at on the �oor, pointing with the

arrow towards the north-pole. The problem now is, that every sensor seems to detect

a di�erent north-pole, meaning all arrows point in a di�erent direction. Figure 7 shows

this problem, as all sensors point in a di�erent direction. A compass was used to detect

the actual north-pole.

Figure 7: Di�erent O�sets in z-direction: IMUs (black) point towards di�erent north-
poles while compass (grey) shows actual north-pole

The sensor-layout shown in Figure 7 can be achieved by laying the sensors �at on the

�oor, all next to each other, pointing in the same direction. If then data acquisition is

started in Motion, a live-view shows the z-o�set of every single sensor. The sensors can

then be turned around their z-axis, until the z-value is approximately 0 rad.
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Figure 8: Z-o�set of six IM-sensors at the 20-seconds-mark

Another good visualization for this problem is the data itself, as it can be seen after

recording in Motion. Figure 8 shows such an o�set in rad/s with six IM-sensors used.

The moment of 20 s was chosen, because various measurements show, that the sensors

take time to initialize. This usually is the case after 10 s, but another 10 s were added

as a precaution. Sensor 1 (red) has the smallest o�set with -2.526 rad, Sensor 4 (pink)

has the biggest with -1.904 rad. So the di�erence between biggest and smallest o�et is

0,627 rad which equals approx. 35,638◦.

2.5.2. Z-o�set: possible causes

Like mentioned before, this problem seems to be inexplicable, especially because the

o�sets vary from time to time. Nevertheless there are some in�uences, that help create

this problem.

• Magnetic �eld: like the compass, the sensors orientate themselves through their

three magnetometers at the magnetic �eld. The �eld can be in�uenced by various

things, such as electricity or ferrous objects. The laboratory, that was used during

data acquisition, contains not only ferrous objects like a desk, but also a computer,

cameras and their electrical wires, force plates and a treadmill. Those items change

the magnetic �eld in an unpredictable way.

• Sensor calibration: like mentioned in the next section, the each sensor is calibrated

before its use. Every sensor has to be calibrated manually that is, two calibrations

will never be the same. In addition to that, the calibration tool does not really

give a clue, if the calibration was performed well or not.

• Constructional errors: all sensors look alike, only their assigned numbers di�er.

This does not include the inside of the sensors, which can not be looked at. As
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the sensors are highly susceptible to all kinds of in�uences, tiny errors during

production could make them change their behavior.

2.5.3. Z-o�set: solution

Although the issue seems to inexplicable, there is a solution to this problem. The o�set

can be measured after every calculation and does not change as long as the sensors stay

in the same spot and are not re-calibrated.

Before every data acquisition, the o�set of the sensors has to be measured and can

then be used to perform a coordinate transformation of the actual movement. This will

not only solve the o�set-issue, but also be part of the global coordinate transformation.

This transformation can be achieved in two di�erent ways, each having advantages and

disadvantages.

Mathematical transformation

The mathematical correct version calculates with normal an inverse matrices. The actual

movement data will be called M, the new one MT while the z-o�set is O or O−1 for inverse

z-o�set.

MT = O−1 ∗M ∗O (1)

When calculating with matrices, it is important in which order they are multiplied with

each other, because the commutative law does not apply. So the o�set-matrix is �rst

inverted and calculated onto the movement-matrix from the left (M is the center-matrix).

After this step, the original o�set-matrix has to be multiplied with M from the right to

get the transformed matrix MT . The advantages of this way are:

• Mathematical correctness. Every moment in time is used to calculate a new set of

data at this exact moment. Therefore no error is produced.

• Calculation tools, which are o�ered already in Motion and do not need to be

calculated in a di�erent program like Excel.

Although this way is mathematically correct, there is one major disadvantage, too:

• The calculation-tool in 'Motion' only calculates data from two data-rows for the

time-span, that both rows overlap. This means, either both data rows have to

have the exact same length, or the o�set-measurement has to be longer, than the

actual movement-acquisition. If the o�set-data-row is shorter in time than the
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movement-acquisition, the extra time will still include the o�set. Although the

o�set-data can be stretched in time by reducing the frame rate, the user always

has to know exactly how long he acquired data. Also alongside the stretching,

there are multiple steps needed, to transform the o�set data with the movement

data including inverting the o�set and calculating for every single sensor by itself.

A request for a more user friendly use was started .

• Another smaller disadvantage is the time, as the sensors do not only have to initial-

ize during the o�set measurement, but also during movement-acquisition. For the

movement-acquisition, an initialization time of 20 seconds is used, to ensure, that

the sensors initialized right. This extra time has to be taken into consideration

when measuring the o�set in this way.

Summing up, the method uses precise calculations with tools from 'Motion' to give

precise transformed data, but is very limited in terms of extra time or second/third, etc.

tries.

Turning system of coordinates

The second way is a more practical approach, using an important fact of the o�set-

problem. Measurements show, that the o�set only appears in z-direction, x- and y-

coordinates are zero.

Figure 9: Z-o�set compared to x- and y-o�set of 2 sensors

Figure 9 shows, that during the o�set-measurement, sensor 1 has an o�set of -0,004

rad (or -0,229 ◦) in x-direction (red) and 0,002 rad (or 0,115 ◦) in y-direction (green).

These small di�erences are more like a noise, than a signi�cant value like the z-o�set.

Sensor 2 is approximately [approx.] the same. This means, that the coordinate system

is just turned around the z-axis, but the x-y-plane remains the same. For the second

way, 'Motion' o�ers a tool, that turns the coordinate system around one speci�c axis.
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Again the method only works in this case, because solely one axis is a�ected. In a way

this method does the same thing as way number one, just in a more practical approach.

The advantages are:

• One value (mean-value of the o�set) from each sensor is needed to perform this

step and it only takes one step to perform this calculation.

• The procedure is time-independent, therefore it can be added to the calibration as

a standardized procedure for any movement-acquisition.

Like the other method, this way also inherits disadvantages:

• This method needs one value in (◦), around which the coordinate system is turned.

For this value, the mean-value from the time-span 10 s to 30 s is used and recal-

culated from radiant into degrees. Also the standard deviation is calculated to

see, if the sensors are drifting and have to be re-calibrated. This is usually the

case when the standard deviation is above 1,5 ◦. Normal standard deviations vary

from 0,20 to 1,0 ◦. 'Motion' does not yet o�er tools to calculate mean-value or

standard deviation simply by executing one calculation. The calculation-template,

that is needed for this action, is not yet written so the calculations for this step

are performed in Excel (or in case of this thesis with Libre O�ce Calc).

To get the z-o�sets from 'Motion' into 'Calc', they are exported as a .txt �le.

• The method inherits a mathematical error, as only the mean-value is used. The

standard deviation shows, which error this is.

• The calculation needs one extra step in a program like Excel and can not yet be

performed solely in 'Motion'.

Although the second methods inherits a mathematical error, this error is usually so

small, that it can be neglected. The advantage to use this method as a standardized

procedure in addition to calibration for any movements outbalances the disadvantages

and is thus used in this thesis. With the outlook on an upcoming calculation template,

this method will also be faster than method one. Both methods share one advantage and

one disadvantage: both methods eliminate the z-o�set problem and are at the same time

used for the global-coordinate-transformation. The disadvantage is, that every step has

to be performed for each sensor separately, therefore more sensors take longer to correct,

than fewer ones.

This method does not necessarily require a camera recording, as long as all sensor face

in the exact same direction during the o�set measurement.
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2.5.4. Sensor-calibration: background information

Another inexplicable issue is the sensor calibration. It is performed before data-acquisition

in an external software called 'Delsys IM Sensor Calibration' and then loaded into the

software 'Trigno Control Utility'. In the Magnetometer calibration, the user traces a

sphere in the place of movement by performing eight-shaped movements. After this step

is repeated for every sensor, the sensors are then placed on the �oor to perform the Ac-

celerometer calibration. All sensors are recorded together in this step. After calibration,

the �le is exported in a comma separated �le [.csv]-�le. There are several problems:

• Calibration is performed manually, therefore no sensor will be calibrated in the

same way like the others.

• The newest calibration-software tells the user in a percentage from 0 to 100 percent,

how good or bad a calibration was performed. However, all sensors roughly get

the same percentage every time, no matter how good or bad they were actually

calibrated.

• The calibration-�le can be manipulated in a way, that every sensor has the exact

same calibration-data. This does not a�ect the z-o�set of this calibration, though.

• The quality of the calibration can not be linked to the z-o�set, but if the z-o�set

has one outlier, this problem can usually be solved by re-calibrating the sensors.

To show, that all sensors get roughly the same calibration each time, a test with six

IM-sensors was performed. All six sensors were calibrated 10 times and the quality

noted. After 10 calibrations, the mean value and standard deviation were calculated.
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Table 1: IM-sensor Calibration
Calibrations Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6
1 90,76 87,07 91,92 89,05 95,33 82,54
2 91,21 86,70 91,29 86,80 91,24 85,87
3 92,77 87,78 92,21 86,77 93,28 85,25
4 91,92 88,13 92,52 90,23 92,95 84,16
5 88,48 87,73 91,11 87,06 91,63 84,71
6 90,62 88.78 93,09 84,63 94,58 89,30
7 90,54 88,40 90,74 88,33 91,67 86,17
8 91,58 89,15 92,52 89,25 93,10 87,24
9 90,90 88,89 90,93 88,59 93,50 84,50
10 91,70 88,09 90,93 88,59 93,50 84,50
Mean value in % 91,05 88,07 91,75 87,92 93,01 85,18
S.dev. in % 1,13 0,78 0,81 1,61 1,29 2,15

calibrations performed with eight sensors in %

Table 1 shows, that no matter how often the sensors are re-calibrated, the standard

deviation is only 2.15 % at the max.

Between every calibration, the z-o�set was measured, to see if the quality can be

linked to the o�set. When comparing Channel 2 with its calibrations, no pattern can be

spotted.

Figure 10: 10 calibrations of sensor 2 compared 10 o�set-acquisitions

Sensor-calibration: solution

Although the calibration is a faulty procedure, that does not give any hints, if the

sensors are calibrated well or bad, it does not create any further problems either. It
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is not possible, to link the bad calibration-procedure to the o�set problem solely with

acquisitions and 'Motion'. Therefore it will not be mentioned in this thesis any further.

2.5.5. Magnetic �eld

In section 2.5.2., the magnetic �eld was already mentioned to cause possible problems

concerning the z-o�set. This section will cover some �ndings about the magnetic �eld.

As mentioned previously, the sensors use their built-in magentometers to orientate in the

magnetic �eld of the earth. Although the magnetic �eld is de�ned by north- and south-

pole, it is not homogeneous, as it can be diverted by di�erent causes. These causes

include ferromagnetic diversions such as ferric parts of a table, supports in a house's

wall or the roof. In addition electric devices like cellphones, computers or any parts

and wires connected to them change the magnetic �eld temporarily. Especially small

rooms or gait-analysis laboratories with many cameras, force-plates, a treadmill and

complimentary computers can not secure a nearly homogeneous magnetic �eld. Section

2.5.1 hints, that these changes might a�ect the z-o�set.

A measurement in an in-door tennis court supports this theory.

Figure 11: Z-o�set of six IM-sensors in an in-door tennis facility

Figure 11 shows, that at the time-mark of 20 s, the o�set of the sensors to each other

is only 0,137 rad equaling approx. 7,87 ◦. Compared to the o�set mentioned above with

almost 36 ◦, the di�erence is notably big. In this case of measurement, all cameras and

the computer were placed at least 7 meters and 20 meters at the max from the movement

area. This proves, that in wider areas of movement with cameras and computers further

away, the IM-sensors do have a smaller o�set to each other.

Summing up, this section shows, that in larger areas of movement or even outdoors,

the sensors will get notable better results. The recordings from this thesis were acquired

in a small lab with close-up cameras, force-plates and computers, though.
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3. Materials

This section will give an overview of software and hardware used in this thesis. Part one

and two use the same materials, therefore they will only be mentioned once.

3.1. Software

• Simi Motion 9.2.1 RC1 for calibration, marker- and IMU-tracking

• Simi Shape 2.2.1 RC4 for silhouette-tracking

• Libre O�ce Calc for calculating and averaging the IM-o�set as well as calculating

the Spearman-correlation

• Delsys Trigno Control Utility version 2.5

• Delsys Calibration for Sensor calibration (comes with Trigno Control Utility)

3.2. Hardware

• Simi Motion Calibration tools: L-frame and T-Wand

• 44x 12,5 mm re�ective markers for inverse kinematics

• 8x Basler scA 640-120cg cameras with up to 120 Hz of frame rate and a resolution

of 658x492 pixels

• 8x ringlights with 72 LEDs each

• 8x Fujinon 3.8-13 mm DV3.4x3.8SA-1 lenses

• 1x IO-Box for camera and ringlights power-supply and integrated National Instru-

ments trigger-board

• each one power-cable and one Ethernet-cable per camera

• 5-8 Delsys IM-sensors depending on the recordings

• one Delsys Trigno-Station for IM-sensor recording connected via USB to the com-

puter

• one Computer with all Software installed
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4. Methods

Section 4. will focus on the various methods, used in this thesis. This includes the

explanation of the data acquisitions as well as the statistics to compare the results.

4.1. Setup and Calibration

In both parts of this thesis, the same setup and calibration is used. Eight cameras were

used for recording in the same setup for the two recordings. Four cameras are placed with

tri-pods and clams on the �oor or the wall in hip-height, two each sagittal and frontal

or dorsal respectively. The additional four cameras were placed in the room corners,

�lming from above. This setup guarantees, that every marker and body segment can be

seen at any time of recording in at least two cameras. Also all cameras are either close

to the capturing area or zoomed in to have as little surroundings captured as possible.

This is important, because this way arms or legs can be di�erentiated better.

All recordings feature the same type of calibration to distort the cameras and set

the coordinate system. In this process, a wand dance is performed and processed as

described in the 'Motion Manual' [10, p.30-40].

The IM-sensors were calibrated using Delsys' Calibration tool and then placed along-

side the L-frame, facing all in the same direction to record their z-o�set. The o�set was

later on calculated onto the acquired IM-movement data as described in section 2.5.3..

4.2. Marker- and IM-sensor-placement

Both parts use the same marker and IM-sensor-placement. 44 markers are used in this

thesis for the inverse kinematics model shown in �gure 3 in section 2.1.1.. Except for

the two toe-markers, which are only needed for the static model initialization, all other

42 markers were used during every acquisition.

During all acquisitions, �ve IM-sensors were used to record rotations in di�erent seg-

ments. In every movement, the sensors were placed on the same segments:

• Pelvis: Sensor one was placed on the mid spina iliaca posterior, underneath the

lower back marker. This sensor will record pelvic rotations and support especially

marker-less tracking at this position. Also the two movements recorded rely on

quality hip information.

• Thorax / Cervical Spine 7 [C7]: Sensor two is placed underneath the C7-marker

on the upper back right between the two shoulders. This sensor will record rota-
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tions of the trunk and is interesting to be compared to the hip-sensor. Again the

information is important for the two movements recorded. Sensors one and two

both point with their arrows cranial.

• Upper arm right: Sensors three to �ve are placed on the right arm to gather

rotational information, especially inversion and eversion of the three arm segments.

Therefore all sensors are aligned alongside an axis pointing from the shoulder

towards the middle �nger base joint. Sensor three is placed in the middle of the

upper arm between shoulder-joint marker and epicondylus lateralis marker as well

as in-between biceps and triceps markers.

• Lower arm right: Sensor four is placed three-fourths of the lower arm towards the

wrist joint in the middle between markers wrist lateral and medial right, being

aligned with sensor �ve on the back of the hand. This particular placement is used

to capture rotations caused by ulnar and radius in the lower arm and thus to di�er

from the shoulder rotations in the upper arm.

• Wrist right: Sensor �ve is placed on the middle �nger base joint close to sensor

four with the di�erence, that sensor �ve also captures rotations of the wrist-joint.

Sensor �ve is placed on the back of the hand to prevent disturbance in the palm

when holding a racket. All arm sensors have their arrows pointing towards the

middle �nger base joint.

The orientation of the sensors is not important for calculations but gives consistency in

placement and eases some steps when used in 'Shape'.

4.3. IM-sensor: Pre-movement initialization

It was mentioned previously, that the IM-sensors need time to initialize themselves,

before they can be used for data acquisition. Every sensor takes a di�erent period of

time to initialize and engage onto their certain o�set. Usually all sensors are initialized

after 10 seconds but an additional 10 seconds are used to secure that the sensors are all

set. During these 20 seconds, the recorded subject needs to stand still in the neutral zero

position, facing in the direction of movement. During this time, cameras and sensors

are recording already.

After 20 seconds, the sensors o�sets caused by their placement on the segments towards

the global coordinate system are zeroed by clicking the command 'Zero positioning' in
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'Motion'. The sensors X-, Y- and Z-data is then set to 0 rad and the sensors are ready

to use.

4.4. Recorded Movements and Data comparison

In this thesis, two di�erent movements in two di�erent recordings were used to validate

the sensors implementation and recorded data: a golf-swing as well as a tennis fore-

hand and backhand. Recording one consists of one golf-swing and one tennis forehand,

recording two of one golf-swing and a tennis backhand. Both recordings use the exact

same camera setup, marker positioning and IM-sensors but were recorded on di�erent

dates.

In each recording, the following sets of data were acquired:

• IM-sensor segment rotations of pelvis, thorax, upper and lower arm right as well

as wrist right

• Marker-data of the inverse kinematics model, only segment rotations of the seg-

ments mentioned above are used.

• Shape silhouette-tracking data, again only segment rotations are used

• Hybrid Shape and marker segment rotations

• Hybrid Shape and IMU segment rotations

Every segment-rotation is outputted in X-, Y- and Z-rotations which are compared to

each other via a correlation coe�cient. Alongside the single coordinate rotations, a total

correlation of all three rotations combined is compared as well. The total correlation

is also used in the second recording to decide whether a hybrid silhouette-IMU based

tracking makes sense or not.

4.5. Spearman's correlation coe�cient

For the means of data comparison, a special statistic method has to be used in this

thesis. One of the most common correlations coe�cient formulas was introduced by

Pearson in 1865. This statistic method compares two sets of data when they are normally

distributed with the help of a coe�cient, that tells the user a percentage how close the

data rows correlate. The data sets in this thesis are not normally distributed, though.

Therefore Pearson's method does not apply. Instead a comparison by Spearman has to
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be calculated. Spearman's method is a special case of the Pearson formula, that uses

ranks of the data rows instead of the data rows solely. Other than that, the same formula

is applied. It reads as following:

rs =

1

n
∗ Σi(rgxi ∗ rgyi) − (mvrgxi ∗mvrgyi)

sdrgxi ∗ sdrgyi
(2)

Rs means Spearman's coe�cient or is simply just referred to as ρ (rho). Rgx and rgy

are the ranks of the data rows of X and Y which is not to be confused with the the

coordinates X, Y and Z. Rgx and rgy can be the X (coordinate) data-rows of Pelvis

IMU and Marker data, for example. Mvrgx is the mean value of rgx, while sdrgx the

standard deviation. N is the number of samples compared [18, p.309].

Values vary from -1 to +1 with a value close to -1 being a perfect negative correlation,

+1 being a perfect positive one. Coe�cients close to 0 mean bad or no correlation. Like

mentioned before, X, Y and Z-coordinates are used for comparison as well as a total of

X,Y and Z. The total value, which describes the correlation of two segments, can not

be taken as a mean value of correlation X,Y and Z but has to be calculated separately,

again with the help of Spearman's formula. In this case, values of X, Y and Z are written

underneath each other for each method and then compared to the other method. Figure

12 shows an example of how the coe�cient is being calculated in Libre O�ce calc.

Figure 12: Example of Spearmans calculation in Libre O�ce calc, Pelvis IMU and
Marker data is compared

In order to value the correlations coe�cients, a classi�cation has to be used. In the

year 1980, Cohen made such a classi�cation:

36



4. Methods

Table 2: Cohen's Spearman classi�cation
rs Interpretation
0,1 weak correlation
0,3 average correlation
0,5 strong correlation

correlations coe�cients with di�erent interpretations

This classi�cation is not suitable for this question, as it is anticipated to have strong

correlations with high values. This is due to the fact, that di�erent tracking methods

record the same movement. In order to classify data in this thesis, the module has been

adapted using various sources [19] ,[20] .

Table 3: Adapted Spearman classi�cation
rs Interpretation
≤ 0.5 weak correlation
0,5-0,8 average correlation
≥ 0.8 strong correlation

correlations coe�cients with di�erent interpretations adapted for this thesis

This classi�cation is more suitable for the data and therefore used.

4.6. Data processing

After data acquisition, the data has to be processed further to ensure, all data-�les have

the same settings. The inverse dynamics group from the markers is calculated through

a static and a dynamic calculation. For the static 3D-coordinates, all 44 markers have

to be clicked in at least two cameras and then saved as a static 3D-coordinates group to

serve as a initialization pose for the 3D-dynamic calculation. The inverse dynamics then

inherit the segment-rotations. The inverse kinematics groups from silhouette tracking

and hybrid silhouette tracking already inherits segment rotations and is automatically

calculated after tracking is �nished. IM-sensor data includes already the required seg-

ment rotations data. Additionally the rotations have to be converted from [rad] to degree

[◦]. All other segment rotations are already in degrees.

All �les were recorded from 'Motion' and 'Shape' were �ltered, using a second order

lowpass �lter with 6 Hertz [Hz]. This frequency is orientated on Richards, who rec-
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ommends higher cut-o� frequencys for faster movements then walking but for slower

movements 6 Hz [21]. Dal. Pupo et. al. as well as Wilson et. al.[22] use 10 Hz �lters

for faster movements such as jumps. When correlating a Pelvis data row �ltered with

10 Hz to one with 6 Hz, the correlation coe�cient is at rs = 0.99901. This means that

the data does hardly di�er. For reasons of consistency, the 6 Hz �lter was chosen.

Figure 13: Pelvis movement �ltered with 6Hz vs 10 Hz

One more step has to be performed before correlating data: although all methods are

triggered and capture the exact same time, IM-sensors have a �xed frequency of 148.5

Hz, while all other data is captured with 100 Hz. That is IM-sensors have more samples

than all other data. A time normalization is performed by resampeling all data to the

amount of IM-samples, because IM-sensors always record with 148.5 Hz, while data from

all other methods can vary on what frequency is used for recording.

5. Results

In the following section, results from both capture day one and two are presented. As

this part of the thesis focuses on the implementation of the IM-sensors in 'Motion', only

results regarding this part are presented. Those will include pelvis, thorax, upper-, lower-

arm right and wrist segment rotations of one golf hit and one tennis forehand on capture

day one and a golf hit and one tennis backhand on capture day two. For each speci�c

segment, IM-sensor data will be compared to marker data as well as to silhouette based

data. The comparison will be done by means of the correlations coe�cient calculated

by Spearmans rule mentioned in section 4.5.
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5.1. Golf swing capture day one

5.1.1. Comparison of Marker and IMUs: Pelvis

During a golf swing, pelvic rotations feature one signi�cant rotation, which is the rotation

around the Z-axis. This is because during the di�erent swing phases, the body turns

around the Z-axis in more than 180 ◦. Figure 14 shows, that while there is only a slight

change in X and Y, the Z graph has a signi�cant path.

Figure 14: X-, Y- and Z-values of the pelvis based on IMU-data

Marker data of this rotations highly correlates to the IM-sensor rotations in Z-axis.

Other than that, the total correlation of both methods is very close, too.

Table 4: Spearman correlation of IM-sensors and Marker data: Pelvis
Type rs Interpretation
X 0,90744 strong correlation
Y 0,72307 average correlation
Z 0,94198 strong correlation
total 0,96154 strong correlation

correlations coe�cients of Pelvis during golf hit on capture day one

5.1.2. Comparison of Marker and IMUs: Thorax

Like the pelvis, the thorax too changes most signi�cantly in Z-direction. Rotations

around Z are even stronger than in the pelvis like �gure 15 shows. In this particu-

lar �gure, thorax and pelvis Z-rotations of IMU data was presented. Again, a strong

correlation between markers and IMUs is expected.
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Figure 15: IM-sensor Z-values of pelvis and thorax are presented

Table 5: Spearman correlation of IM-sensors and Marker data: Thorax
Type rs Interpretation
X 0,88940 strong correlation
Y 0,58620 average correlation
Z 0,94687 strong correlation
total 0,95888 strong correlation

correlations coe�cients of Thorax during golf hit on capture day one

Z and total values show, that both methods also correlate strongly in this segment.

5.1.3. Comparison of Marker and IMUs: Upper arm right

The upper arm does not feature one signi�cant rotation during the golf swing but all

three rotations are important. For inversion and eversion rotations of a stretched out

arm pointing in Y-direction, a rotation around the Y-axis has to be looked at. But as

the swing does not consist of only one part where the arm is stretched out pointing

forward, the inversions and eversions consist of more than one single part of rotational

information.

Table 6: Spearman correlation of IM-sensors and Marker data: Upper arm right
Type rs Interpretation
X 0,94019 strong correlation
Y 0,84147 strong correlation
Z 0,93352 strong correlation
total 0,89289 strong correlation

correlations coe�cients of Upper arm right during golf hit on capture day one

Again strong correlations between IM-sensor rotations and markers are present.
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5.1.4. Comparison of Marker and IMUs: Lower arm right

Although the lower arm is not integrated in the Shape part, results of the rotations will

still be looked upon. Like the upper arm, the lower arm is troubling with inversions and

eversions.

Table 7: Spearman correlation of IM-sensors and Marker data: Lower arm right
Type rs Interpretation
X 0,56178 average-weak correlation
Y -0,01862 negative weak correlation
Z 0,62024 average correlation
total 0,79285 average correlation

correlations coe�cients of Lower arm right during golf hit on capture day one

The lower arm right is the �rst segment to only achieve decent correlations. Sugges-

tions about the IMUs behavior on this particular segment will be discussed in the section

'discussion' of part one.

5.1.5. Comparison of Marker and IMUs: Wrist right

As the wrist features all rotations from the lower arm as well as additional �exion and

extension, similar correlations like the lower arm are expected.

Table 8: Spearman correlation of IM-sensors and Marker data: Wrist right
Type rs Interpretation
X 0,63604 average correlation
Y 0,51540 average correlation
Z 0,92583 strong correlation
total 0,88305 strong correlation

correlations coe�cients of Wrist right during golf hit on capture day one

Unlike the bad correlations of the lower arm, the wrist again has an overall strong

correlation with the markers.

5.1.6. Comparison of Shape and IMUs: Pelvis

As especially in silhouette tracking, data of the pelvis and the arms cause trouble, their

data is interesting to be looked at in terms of a comparison between 'Shape' and IM-
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sensor rotations. Although it is apparent that data from Shape does not correlate very

good to markers, it is interesting to see, if IM-sensor data correlates to Shape data in

the same way.

Table 9: Spearman correlation of IM-sensors and silhouette data: Pelvis
Type rs [%] Interpretation
X 0,32562 weak correlation
Y 0,54398 average correlation
Z 0,73456 average correlation
total 0,825514 average-strong correlation

correlations coe�cients of Pelvis during golf hit on capture day one

Figure 21 shows, that especially the signi�cant Z-rotation is not as strong in 'Shape'

as it is with markers or IM-sensors.

Figure 16: Z-rotations of Shape-data compared to IM- and marker-based data

5.1.7. Comparison of Shape and IMUs: Thorax

Other than the Pelvis, the Thorax is expected to have high correlations, because unlike

the hip, the upper body is not to prone to joint movements. As the shoulders are

connected to the upper-body, this segment has changes in the silhouette that can be

segmented better.

Table 10: Spearman correlation of IM-sensors and silhouette data: Thorax
Type rs [%] Interpretation
X 0,93176 strong correlation
Y 0,79358 average correlation
Z 0,89791 strong correlation
total 0,97493 strong correlation

correlations coe�cients of thorax during golf hit on capture day one
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5.1.8. Comparison for Shape and IMUs: Upper arm right

Shape-data compared to IMU-data of the upper arm right has the following correlation

coe�cients:

Table 11: Spearman correlation of IM-sensors and silhouette data: Upper arm right
Type rs [%] Interpretation
X 0,95295 strong correlation
Y 0,86620 strong correlation
Z 0,80321 average correlation
total 0,87774 strong correlation

correlations coe�cients of upper arm right during golf hit on capture day one

5.1.9. Comparison of Shape and IMUS: Lower arm right

Table 12: Spearman correlation of IM-sensors and silhouette data: Lower arm right
Type rs [%] Interpretation
X 0,0,61001 average correlation
Y 0,09891 weak-no correlation
Z 0,87616 strong-average correlation
total 0,54643 average correlation

correlations coe�cients of Lower arm right during golf hit on capture day one

Like the comparison of IM sensors to marker data, the comparison with the Shape-data

shows average to weak correlations.

5.1.10. Comparison of Shape and IMUs: Wrist

During normal Shape-trackings, the wrist joint is locked to achieve more stable results.

With this background information, the correlation is not expected to be good.
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Table 13: Spearman correlation of IM-sensors and silhouette data: Wrist
Type rs [%] Interpretation
X 0,62698 average correlation
Y 0,69091 average correlation
Z 0,03760 weak-no correlation
total 0,29140 weak correlation

correlations coe�cients of Wrist right during golf hit on capture day one

Like expected, the correlation is weak.

5.2. Tennis forehand capture day one

Like the golf swing, the tennis hit was recorded with the exact same setup and right

after the golf hit. Therefore the sensors behavior is not expected to change much.

5.2.1. Pelvis: IMUs and markers, IMUs and Shape

Although tennis and golf are to very di�erent sports, rotations for the pelvis are expected

to show similar results to the ones from the golf swing. This is because also during a

tennis hit, the body is rotated mostly around the global Z-axis. Also from this section

onward, each segment will feature all comparison summed up in one section.

Table 14: Spearman correlation of IM-sensors and marker/silhouette data: Pelvis
Method X Y Z total
IMU-marker, rs 0,97298 0,83657 0,93685 0,93337
Strength strong average-strong strong strong
IMU-Shape, rs 0,80036 0,05712 0,93685 0,79750
Strength average-strong weak-none strong average

correlations coe�cients of Pelvis during tennis forehand on capture day one

Especially during the very de�ned Z-rotations, correlations between IMUs and markers

or Shape respectively are strong.

5.2.2. Thorax: IMUs and markers, IMUs and Shape

Again, during the tennis movement the upper body's movement is de�ned through a big

rotation around the Z-axis. Therefore a look upon those data is especially interesting.
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Table 15: Spearman correlation of IM-sensors and marker/silhouette data: Thorax
Method X Y Z total
IMU-marker, rs 0,98822 0,39430 0,99600 0,95986
Strength strong weak strong strong
IMU-Shape, rs 0,99294 0,27220 0,98164 0,95675
Strength strong weak strong strong

correlations coe�cients of Thorax during tennis forehand on capture day one

One signi�cance of this data-table is, that the Y-coordinate correlation is weak in

both comparisons. This shows, that if the correlation of IM-sensors to markers is weak,

it will not get better when being compared to Shape-data.

5.2.3. Upper arm: IMUs and markers, IMUs and Shape

For the upper arm right, the following data correlations were acquired.

Table 16: Spearman correlation of IM-sensors and marker/silhouette data: Upper arm
right

Method X Y Z total
IMU-marker, rs 0,97264 0,14588 0,97907 0,87171
Strength strong weak strong strong
IMU-Shape, rs 0,98637 0,41392 0,94913 0,91257
Strength strong weak strong strong

correlations coe�cients of Upper arm right during tennis forehand on capture day one

Also in this section, both Y-data correlations are weak. This is due to IM-sensor

problems.

5.2.4. Lower arm: IMUs and markers, IMUs and Shape

In case of the lower arm right, the following data correlations were calculated:
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Table 17: Spearman correlation of IM-sensors and marker/silhouette data: Lower arm
right
Method X Y Z total
IMU-marker, rs 0,41526 0,42280 0,04978 0,61583
Strength weak weak weak-none average
IMU-Shape, rs 0,39986 0,50276 0,78057 0,64579
Strength weak average-weak average average

correlations coe�cients of Lower arm right during tennis forehand on capture day one

Although the correlation of IMU data to Shape data is better than correlated to the

marker data, the overall total correlation shows, that the data rows are by far not close

to each other.

5.2.5. Wrist: IMUs and markers, IMUs and Shape

With the wrist being connected through a joint to the lower arm, transferring the rota-

tions of the lower arm onto the wrist, a similar result for the wrist is expected.

Table 18: Spearman correlation of IM-sensors and marker/silhouette data: Wrist right
Method X Y Z total
IMU-marker, rs 0,72214 0,92965 -0,04351 0,72219
Strength average strong negative weak-none average
IMU-Shape, rs 0,73693 0,52308 0,33521 0,52087
Strength strong average weak average

correlations coe�cients of Wrist right during tennis forehand on capture day one

Although the correlations in the wrist are better than in the lower arm, both total

correlations are not above average.

5.3. Golf swing capture day two

In this thesis, two captures on di�erent days were performed, to see, if the data is

somewhat consistent and does not change throughout the days. For this purpose, the

second capture day was chosen to be two weeks after capture day one but with the

exact same setup and sensors During the acquisition, another golf swing and a tennis

backhand were performed. The di�erent tennis movement was not chosen on purpose,

as the sensors are expected to give good results independent from the actual movement.
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5.3.1. Pelvis: IMUs and marker, IMUs and Shape

It is expected that the sensors have similar correlations compared to day one, as nothing

in the setup was changed.

Table 19: Spearman correlation of IM-sensors and marker/silhouette data: Pelvis
Method X Y Z total
IMU-marker, rs 0,89803 -0,33340 0,98927 0,59634
Strength strong negative weak strong average
IMU-Shape, rs 0,22260 0,52151 0,99380 0,76298
Strength weak average-weak strong average

correlations coe�cients of Pelvis during golf swing on capture day two

Although the Z-rotation is correlating strong again, the total correlations are only

average.

5.3.2. Thorax: IMUs and marker, IMUs and Shape

Table 20: Spearman correlation of IM-sensors and marker/silhouette data: Thorax
Method X Y Z total
IMU-marker, rs 0,94983 0,16314 0,98234 0,69443
Strength strong weak-none strong average
IMU-Shape, rs 0,94806 0,26794 0,97863 0,69768
Strength strong weak strong average

correlations coe�cients of Thorax during golf swing on capture day two

Again the Z-rotation has a good correlation, but the overall correlations are only average.

47



5. Results

5.3.3. Upper arm right: IMUs and marker, IMUs and Shape

Table 21: Spearman correlation of IM-sensors and marker/silhouette data: Upper arm
right

Method X Y Z total
IMU-marker, rs 0,72142 0,041681 0,88214 0,75763
Strength average weak-none strong average
IMU-Shape, rs 0,62404 0,06825 0,59173 0,56336
Strength average weak-none average average

correlations coe�cients of Upper arm right during golf swing on capture day two

The upper arm right correlations show an even worse overall correlation of the sensors

compared to the other two methods. Also the single coordinate correlations are getting

weaker.

5.3.4. Lower arm right: IMUs and marker, IMUs and Shape

Table 22: Spearman correlation of IM-sensors and marker/silhouette data: Lower arm
right

Method X Y Z total
IMU-marker, rs 0,16422 0,84768 0,68705 0,02117
Strength weak strong average weak-none
IMU-Shape, rs 0,43761 0,74499 0,14917 0,29136
Strength weak average weak weak

correlations coe�cients of Lower arm right during golf swing on capture day two

Although the Y rotations have only had weak correlations and no strong/average, the

other values and especially the total correlations get weaker.
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5.3.5. Wrist right: IMUs and marker, IMUs and Shape

Table 23: Spearman correlation of IM-sensors and marker/silhouette data: Wrist right
Method X Y Z total
IMU-marker, rs 0,62367 0,90319 0,62392 0,35941
Strength average strong average weak
IMU-Shape, rs 0,11909 0,91368 0,52647 0,37154
Strength weak-none strong average weak

correlations coe�cients of Wrist right during golf swing on capture day two

When comparing data of the wrist, again the overall correlations are weak.

5.4. Tennis backhand capture day two

In the previous section, the overall correlations in the golf swing were only average,

getting weaker. So for the second movement which was performed after the golf swing,

similar results are expected. The movement performed was a tennis backhand in contrast

to the forehand from capture day one.

5.4.1. Pelvis: IMUs and marker, IMUs and Shape

Table 24: Spearman correlation of IM-sensors and marker/silhouette data: Pelvis
Method X Y Z total
IMU-marker, rs 0,82012 0,12419 0,90541 0,81629
Strength strong weak strong strong
IMU-Shape, rs 0,23063 0,14499 0,92509 0,85985
Strength weak weak strong strong

correlations coe�cients of Pelvis during golf swing on capture day two

Compared to the golf swing, also the Tennis backhand features strong correlations con-

cerning the overall data and the Z-data.
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5.4.2. Thorax: IMUs and marker, IMUs and Shape

Table 25: Spearman correlation of IM-sensors and marker/silhouette data: Thorax
Method X Y Z total
IMU-marker, rs 0,22229 0,55995 0,99281 0,81463
Strength weak average strong strong
IMU-Shape, rs 0,25130 0,66796 0,38778 0,77551
Strength weak average weak average

correlations coe�cients of Thorax during golf swing on capture day two

Unlike the strong overall correlations in the pelvis, the correlations in the thorax are

only average.

5.4.3. Upper arm right: IMUs and marker, IMUs and Shape

Table 26: Spearman correlation of IM-sensors and marker/silhouette data: Upper arm
right

Method X Y Z total
IMU-marker, rs 0,40225 0,83163 0,26392 0,77438
Strength weak strong weak average
IMU-Shape, rs 0,51796 0,81060 0,38279 0,72054
Strength average-weak strong weak average

correlations coe�cients of Upper arm right during golf swing on capture day two

The Upper arm right also features in this section average correlations.

50



6. Discussion

5.4.4. Lower arm right: IMUs and marker, IMUs and Shape

Table 27: Spearman correlation of IM-sensors and marker/silhouette data: Lower arm
right

Method X Y Z total
IMU-marker, rs 0,49364 0,09072 0,12198 0,55807
Strength weak weak-none weak average
IMU-Shape, rs 0,32071 0,49458 0,02281 0,45567
Strength weak weak weak-none weak

correlations coe�cients of Lower arm right during golf swing on capture day two

The data acquired through 'Motion' and 'Shape' correlate even worse with the IMUs

concerning the lower arm right.

5.4.5. Wrist right: IMUs and marker, IMUs and Shape

Table 28: Spearman correlation of IM-sensors and marker/silhouette data: Wrist right
Method X Y Z total
IMU-marker, rs 0,76436 0,49549 0,81177 0,75860
Strength average weak strong average
IMU-Shape, rs 0,27570 0,38756 0,90226 0,44828
Strength weak weak strong weak

correlations coe�cients of Wrist right during golf swing on capture day two

Interestingly the data for the wrist correlates better than Upper and Lower arms.

6. Discussion

This section will look at the total correlations of IMUs and markers, to see how close

the data is to each other and where there are any problems. Therefore the section will

be divided into two sections, the �rst one talking about similarities in the acquired data

of capture day one and day two. The second part will look at a comparison and between

the captures of day one and two and try to give an explanation, why during day two,

the sensors worked so bad, that the data was impossible to import into Shape.
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6.1. Total correlations of capture day one and two

In section 4.5, table 3 it was mentioned, that strong correlations are values above 0,8. So

when looking at the results of the overall calculated correlations, especially values above

0,8 are of high interest. In the upcoming �gures, only the total values are displayed. They

were calculated by adding y-,and z-data to the x-data and then calculating Spearman's

coe�cient from the whole data

Figure 17: Table with correlation coe�cients of total values for golf swing day one

Looking at the �gure, it can be noticed, that during this particular golf swing, only

the lower arm right has an average-strong correlation (0,79285) while every other body

part has strong correlations. A potential cause could be the problem, that the sensors

are initialized in the neutral zero position. In this position, the recorded subject should

not have any angle in the lower arm, but in this case, there actually was a small angle

noticed. Other than that, there is no explanation, that would support this error.
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Figure 18: Comparison of lower arms during IMU-initialization: actual position (right)
vs. IM-based model (left)

This theory is also supported by the capturing of the tennis forehand on capture day

one. During the initialization, the subject also was unable to move its arms in a perfect

neutral zero position. Figure 19 shows again, that especially the lower arm right only

has an average correlation, while at least the sensors on the upper arm right as well as

pelvis and thorax correlate strong. The sensor on the wrist right does also not correlate

strong, but at an average of 0,72219. The average is still high and close to a strong value

of 0,8. So although the lower arm does not correlate perfectly, the data still shows, that

for this capture experiment, IM-sensors do correlate strong to marker data.

Figure 19: Total correlation coe�cients from the tennis forehand on capture day one

As good as the total values of the IMU during the golf swing and tennis forehand
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correlated on day one, as bad did they correlate on capture day two. When looking at

the data before even calculating the spearman correlation coe�cient, the data graphs

where totally di�erent from the marker ones and also the IM-inverse kinematics model

moved di�erently from the actual movements. Figure 20 shows that during the golf

swing none of the total correlations were better than average, two were even bad or

close to no correlation at all.

Figure 20: Total correlation coe�cients from the golf swing on capture day two

Compared to the golf swing of capture day one, the di�erences are notable to high.

Figure 21 visualizes the di�erences for each body segment.

Figure 21: Total correlation coe�cients compared from the golf swing on capture days
one and two

The problem with this di�erence is, that nothing was changed at the setup between

capture day one and two. Even the exact same sensors were used and placed on almost
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the same places of the segments. The only variable that might have changed, is the

magnetic �eld, but as it can not be measured in the laboratory prior to every capture,

it is hard to use it as the solution to this problem.

Although the correlations during the tennis backhand are a little better than the ones

from the golf swings, both golf swing and backhand were performed in one capture with

no re-initialization or pause in between. So the bad captures of day two are inexplicable,

especially because the data of day one proves, that the senors work in a similar way like

markers and can also be used to enhance the quality of data, tracked by Shape. Figure

22 shows the comparison of the two tennis movements. Although one is a forehand and

one a backhand, the correlation should not di�er too much.

Figure 22: Total correlation coe�cients compared from the tennis movements on capture
days one and two
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Part III.

Implementing IMUs into Simi Shape

7. Extended Theory

For the implementation of IM-sensor data into Simi's software 'Shape', some additional

background information is needed.

7.1. Silhouette tracking in Simi Shape

Other than the already described motion tracking software Simi Motion, 'Shape' only

uses silhouette information and therefore is not in need of any retro-re�ective markers

and ringlights. Instead all cameras only capture the persons silhouette. Data such as

calibration and video information is featured from 'Motion'. 'Shape' is only used for

tracking and to achieve good tracking results, di�erent aspects concerning the segmen-

tation should be taken into consideration.

• Clear contrast: The subject to be recorded needs to look di�erent from its sur-

roundings. In earlier recordings, a tight �tting morphsuit was used to ensure

optimal contrast. For practical reasons, morphsuits are no longer used and so it is

important that clothes should have di�erent colors than the �oor or walls.

• Close-up picture: cameras should be placed in such a way, that the recorded area

features as much movement of the person as possible while featuring only as little

movement of anything else as possible.

• light: the area of movement should be as bright as possible. When using Shape in

combination with markers, direct light like windows make it impossible to track

markers good. As this was the case in the thesis only passive light was used. For

captures with Shape solely, cameras are also allowed to face windows and direct

light can be used.

The process of markerless tracking can be divided into three major steps. First the

segmentation is performed, using two kinds of videos: the actual movement and an empty

image recorded without anybody inside the movement area. To get good segmentation,

the empty image has to match the image of the movement in terms of light, color and
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objects. The software compares color of every pixel of every camera during this step. If

the upper threshold of at least one color channel is too high, the pixel is associated with

the recorded subject. Also if the lower threshold of at least one color channel is to low, the

pixel is not seen as background anymore. The same happens to di�erent light settings

or objects that appear only in one of the videos. Another option features a solution

to captures, that are performed during training sessions. If during those sessions, the

applicant walks out of the starting position, the background can also be subtracted by

means of creating a new background. This solution is applicable especially for sessions,

where the light changes too much or there is no time for recording a background video.

Step two is the model initialization or model �tting. In this process, a mathematical

model is �tted into the silhouette of the subject. The better step one was executed, the

better the model �ts. In general a Psi-pose is used for this initialization but the pose

can be adopted manually if, for example the subject is running into the image or like in

a training session has no time to perfom a certain pose. During model initialization the

model is �tted exactly as the subject is positioned. This does not only include position

of body parts but also heigth and proportions of the segments.

Step three is the last step and consists of the actual tracking itself. Once the model is

�tted into the silhouette, the tracking process can be started and the recorded movement

will be performed. in every single frame of the movement, the model is �tted into the

subject's silhouette. An iteration setting can be adopted to calculate on slow movements

faster or optimize its pose more often during fast movements. If the silhouette is lost

during the tracking process, the tracking can be paused and the model readjusted. After

�nished tracking, the data can be exported in form of joint centers, joint angles and an

inverse kinematics folder. This also includes segment rotations.

The model used is the same like in 'Motion' with the di�ernce, that lower legs and

arms are only connected to the upper arms (upper legs respectively) through hinge joints.

Those joints do not allow the lower arm to rotate radius around ulna. [6, p.13, 29, 56,

69]

7.1.1. Implementing IMUs into marker-less tracking Simi Shape

Although 'Shape' only functions as an add-on for marker-less tracking, IM-sensor based

data needs to be implemented, too. The only di�erence is, that the when imported into

'Shape', the IM-rotations are already transformed into the global L-frame-coordinate

system and zero set on the segments they are attached to. So the rotations imported

into 'Shape' are already transformed onto the segments and need no further calculation.
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With this rotational data, there still is one problem in 'Shape'. The data contains

information about the rotations performed by the subject but neither does it consist

the actual placement (orientation) of the sensor nor the o�set of the segment towards

the global L-frame-coordinate system. So to assign the right rotation data to the right

segment, it has to be transformed into the segment-local-coordinate system. This trans-

formation does not work like an actual calculation like the transformations in 'Motion'

but is performed via certain steps. Those steps are described in further detail in the

'Methods' section of this part.

Unlike 'Motion', 'Shape' is not used for marker- or IMU-tracking solely, so the infor-

mation imported from markers or IM-sensors is only used to support certain segments

in their tracking process. One example is the pelvic joint, which is connected via a ball

joint to the trunk and can therefore move di�erently from the human hip. Especially

because the body of a shape model only consists of the trunk and the hip, spinal rota-

tions will be translated into rotations of hip and thorax only. This can cause problems,

when the hip tries to �t into the silhouette but should actually rotate in a di�erent way.

Figure 23 shows such a problem

Figure 23: tilted hip during tennis forehand movement

Another problem is the inversion/eversion of the arm. Although the arm rotates,

the silhouette does hardly change, therefore the software does not know for sure, which

way the arm is rotated. The problem that can happen is, that the arm is rotated in a

impossible way and when the movement gets to a point, where the model's arm can no

longer be �tted into the silhouette, a con�ict appears. In case of Figure 24, the lower
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arm could no longer be �tted into its assigned silhouette and is moved into the upper

arm. That way it is ensured that the upper arm can still be �tted correctly. The arm

can be re�tted in a paused tracking process but it does not solve the problem itself. One

possible solution to those problems is to support the tracking with rotational information

from markers or IM-sensors.

Figure 24: tilted arm during golf pre-swing phase movement

8. Additional Methods

This section will only feature methods di�erent from the ones mentioned in the previous

part.

8.1. marker-less tracking

Simi Shape uses all video �les, loaded into 'Motion' for further tracking. To achieve good

tracking results, it was mentioned in an earlier section, that the segmentation has to be

good. Therefore the movement video �les have to be bright and clear enough, to see a

the recorded subject in the image. This is not always the case, as many fast movements

not only have to be recorded at a high frequency, but also the exposure time has to be

low. Otherwise the image will appear blurry during the fast movements and 'Shape'

will no longer 'know' at what exact position the arm is placed. A negative side-e�ect

of a low exposure time is a dark video image which in this form is not any good for
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silhouette tracking. The process to edit the recorded video �le post-capture is called

image processing or 'image-pipe'. In this editing, the video can be brightened up and

also contrast and gamma of the picture can be changed. With the edited settings, the

video can then be imported into 'Shape' and used for tracking.

Another important issue is the video used for background subtraction. Like written in

the section above, 'Shape' uses a background video, also called empty image, to evaluate,

which parts of the movement video are parts of the subject and which are parts of the

background. Not only objects count but also video image brightness, contrast and color.

So if an empty image is recorded previously to capturing, the light settings and also the

post-capture image processing has to be the exact same like the movement video. In

other words, the image settings in both empty image and movement video have to be

the same.

For the means of the empty image, there are two ways to record them using background

subtraction: either an empty image of 1-2 seconds is recorded previously to movements

or at every time in between di�erent movements if any of the room-settings change.

The second way is to record the empty image right at the beginning of the movement,

meaning the recorded subject will have to stand outside the room and then 1-2 seconds

into the video, he/she will walk in and do his/her movement. The recorded videos will

then be saved as 2D-calibration �les and movement videos at the same time. In this

case, one empty image recording was done for each capture day, so that the subject was

able to start its 20 seconds of neutral-zero positioning for the IM-sensor initialization

standing in the exact are of movement and not having to walk through di�erent sets

magnetic �elds to record its movement.

Prior to video import into 'Shape', the changed image settings were exported into

the actual video-�le, to ensure, that 'Shape' uses the right settings. Tracking and data

export back into 'Motion' as well as data preparation was mentioned already and will

to no further extend be written about.

8.2. hybrid marker-based tracking

Like IM-sensors based tracking and silhouette-tracking is compared to marker tracking

being the gold-standard, another method is introduced in this thesis as well. In order

to compare hybrid-IM based tracking not only with silhouette tracking solely, a hybrid

silhouette-marker based tracking is also used. For this speci�c method, certain markers

from the inverse kinematics marker model are used. Those are:
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• Hip/Pelvis: three markers are used to support the hip, mid spina iliaca posterior

and spina iliaca anterior superior left and right. Data from those three markers

will create the pelvis-model

• Thorax: four markers are used to support the thorax/ upper body, manubrium

sterni, C7 as well as Acromion left and right. The thorax model can be created

from this.

• Upper arm: three markers are used to support the upper arm, Acromion right,

right biceps lateralis and right triceps lateralis.

• Wrist right: wrist medialis right and lateralis right as well as middle �nger base

joint are the three markers for this segment.

The lower arm is not supported in the setup, because like mentioned in section 7.1.1.,

the 'Shape'-model does not di�erentiate between upper and lower arm rotations. This

is because the elbow just serves as a hinge joint but is not made for rotations of ulna

around radius. So if such a rotation is imported in 'Shape', it will lead to con�icts in

tracking. Therefore the lower arm is left out.

In order to import 3D-data from 'Motion', the data just has to be selected in the menu

and some settings have to be changed. In the menu 'Marker settings' the data from the

wanted segments has to be selected and then implemented Shape-model-markers are

initialized at the actual 3D-position. Another important setting is the weight of which

the data is used compared to the silhouette data. L.Becker found out that the optimal

weight is silhouette weight being twenty times higher than marker weight, so the marker

weight was set to 0.05 compared to 1.00 for silhouette weight. Once everything is set,

the markers will appear as yellow dots on the Shape-model.

61



8. Additional Methods

Figure 25: Initialized markers on Shape-model for hybrid marker-based silhouette
tracking

Tracking and data export is same to solely silhouette tracking.

8.3. hybrid IMU-based tracking

Like hybrid marker tracking, IMU-based hybrid tracking also uses data sets exported

from 'Motion'. One di�erence is, that IM-sensor data �rst has to be applied to a certain

model. This happens when selecting the 'apply rotations to model'-option and then

dragging the sensors to the segments, on which they were placed on. Afterwards the

rotational data can be selected like marker 3D-data in 'Shape'. In the Rotations settings

various things have to be selected to make the sensors data usable in 'Shape' as well.

• Selecting the right data: once imported, the segment-assigned sensors can be se-

lected in a list. All other body-segments are grayed out and can not be activated.

• Local coordinate systems: once selected, small sensor coordinate axes appear on

the model, where the sensors where placed. Red shows the X-axis, green the Y-

axis and blue the Z-axis, respectively. The coordinate systems will appear inside

the joints, where the segments are connected to each other so the wrist coordinate

system is actually placed in the wrist joint, lower arm in the elbow, et cetera [etc.].

One special case are the coordinate systems of pelvis and thorax, as both appear

in the connection of pelvis and thorax.
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• Coordinate transformation: when selecting the sensor o�sets, the current o�sets

of the sensors compared to the global L-frame-coordinate system will be shown.

To set those o�sets to zero, the sensor o�sets can be turned by moving the X-,

Y- and Z-value-bars to the position, they were positioned during the �rst o�set-

measurement in the sensor calibration. In this case the sensors were placed like

the L-frame, with X, Y and Z aligned to X, Y and Z of the L-frame coordinate

system. Therefore one sensors o�set-coordinate system has to be turned to match

the L-frame. In a second step, the sensors o�set from the global coordinate system

to the segments local system can be calculated by clicking 'set world coordinate

system'. The o�set is then calculated automatically. By selecting 'align sensors'

the o�set of the current sensor will be used to calculate the orientation of all other

sensors. If the data is right, all sensors o�set-coordinate systems should then be

aligned with the global L-frame system.

• Weighing: Like 3D-marker correspondences, IMU-based rotations also have to be

weighed against silhouette-based information. Various trials show, that the marker

settings work for the IMU-settings, too. So IM-correspondences are also set to 0.05.

Again, no lower arm data is imported, because it causes con�icts in the rotations of the

lower arm compared to the upper arm. The same con�ict would also appear in the lower

leg, as it is also only connected through a hinge joint to the upper leg, too.

Figure 26: IM-sensor settings in 'Shape' X=red, Y=green, Z=blue

Unlike marker-based hybrid tracking, IM-sensor hybrid tracking is not always too
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stable, so it could happen, that after time, the silhouette is lost and the model vanished

due to too many con�icts. In this case, the tracking has to be stopped and the model

reset.

9. Results

Regarding the Results of this second section, it has to be said, that the data groups

correlated di�er from part one. As part one solely focused on the implementation of the

sensors in Simi Motion and then comparing it with Marker data and Shape data, this

section will feature groups from two di�erent hybrid trackings. On one hand, hybrid

tracking data of markers supporting Shape will be correlated to marker data. On the

other hand, hybrid tracking data of IM sensors supporting Shape will be correlated to

marker data again. In a third comparison, hybrid IM senosr data will be correlated to

hybrid marker data.

Sections 5.3 and 5.4 already showed, that concerning capture day two, IM sensor data

did not correlate strongly enough to either marker or silhouette data. Therefore, it made

no sense to take the di�erent data �les from the sensors and integrate them into Shape.

In a practical try, this idea failed and no data could be tracked. So in the sub-section of

capture day two, there is no hybrid sensor data and can thus not be compared to hybrid

marker and solely marker data.

9.1. Golf swing capture day one

9.1.1. Pelvis: Hybrid marker-Shape and hybrid IMU-Shape

Table 29: Spearman correlation of hybrid silhouette data: Pelvis
Method X Y Z total
marker-shape and marker, rs 0,96011 0,68008 0,71319 0,92081
Strength strong average average strong
IMU-Shape and marker, rs 0,91088 0,85934 0,93223 0,93369
Strength strong strong strong strong

Hybrid correlations coe�cients of Pelvis during golf swing on capture day one

64



9. Results

9.1.2. Thorax: Hybrid marker-Shape and hybrid IMU-Shape

Table 30: Spearman correlation of hybrid silhouette data: Thorax
Method X Y Z total
marker-shape and marker, rs 0,96423 0,92926 0,91765 0,98086
Strength strong strong strong strong
IMU-Shape and marker, rs 0,88582 0,50829 0,94687 0,96816
Strength strong average-weak strong strong

Hybrid correlations coe�cients of Thorax during golf swing on capture day one

Despite an average correlation of the Pelvis hybrid marker data, concering the Thorax,

the datof both hybrid tracking methods show strong correlations

9.1.3. Upper arm right: Hybrid marker-Shape and hybrid IMU-Shape

Table 31: Spearman correlation of hybrid silhouette data: Upper arm right
Method X Y Z total
marker-shape and marker, rs 0,96794 0,94967 0,94034 0,97946
Strength strong strong strong strong
IMU-Shape and marker, rs 0,94358 0,96809 0,92662 0,96141
Strength strong strong strong strong

Hybrid correlations coe�cients of Upper arm right during golf swing on capture day one

The upper arm right shows, how close both hybrid tracking methods correlate to the

marker gold-standard.
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9.1.4. Lower arm right: Hybrid marker-Shape and hybrid IMU-Shape

Table 32: Spearman correlation of hybrid silhouette data: Lower arm right
Method X Y Z total
marker-shape and marker, rs 0,94293 0,94813 0,9621 0,81542
Strength strong strong strong strong
IMU-Shape and marker, rs 0,77131 0,87533 0,53281 0,63971
Strength average strong average average

Hybrid correlations coe�cients of Lower arm right during golf swing on capture day

one

9.1.5. Wrist right: Hybrid marker-Shape and hybrid IMU-Shape

Table 33: Spearman correlation of hybrid silhouette data: Wrist right
Method X Y Z total
marker-shape and marker, rs 0,39010 0,91489 0,82328 0,41852
Strength weak strong strong weak
IMU-Shape and marker, rs 0,17884 0,54456 0,19456 0,16088
Strength weak average weak weak

Hybrid correlations coe�cients of Wrist right during golf swing on capture day one

9.2. Tennis forehand capture day one

9.2.1. Pelvis: Hybrid marker-Shape and hybrid IMU-Shape

Table 34: Spearman correlation of hybrid silhouette data: Pelvis
Method X Y Z total
marker-shape and marker, rs 0,97428 0,24506 0,95646 0,95329
Strength strong weak strong strong
IMU-Shape and marker, rs 0,96485 0,45116 0,95260 0,95940
Strength strong weak strong strong

Hybrid correlations coe�cients of Pelvis during tennis forehand on capture day one

It is interesting to see how close the correlations of both marker-shape data and IMU-

shape data come to each other. They barely di�er.
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9.2.2. Thorax: Hybrid marker-Shape and hybrid IMU-Shape

Table 35: Spearman correlation of hybrid silhouette data: Thorax
Method X Y Z total
marker-shape and marker, rs 0,99483 0,97852 0,97720 0,99534
Strength strong strong strong strong
IMU-Shape and marker, rs 0,99427 0,97554 0,95260 0,99342
Strength strong strong strong strong

Hybrid correlations coe�cients of Thorax during tennis forehand on capture day one

Again, both hybrid methods correlate with each other very close.

9.2.3. Upper arm right: Hybrid marker-Shape and hybrid IMU-Shape

Table 36: Spearman correlation of hybrid silhouette data: Upper arm right
Method X Y Z total
marker-shape and marker, rs 0,96254 0,94185 0,90615 0,98067
Strength strong strong strong strong
IMU-Shape and marker, rs 0,98621 0,95648 0,91118 0,98506
Strength strong strong strong strong

Hybrid correlations coe�cients of Upper arm right during tennis forehand on capture

day one

9.2.4. Lower arm right: Hybrid marker-Shape and hybrid IMU-Shape

Table 37: Spearman correlation of hybrid silhouette data: Lower arm right
Method X Y Z total
marker-shape and marker, rs 0,73446 0,98114 0,27174 0,36397
Strength average strong weak weak
IMU-Shape and marker, rs 0,73253 0,96121 0,27229 0,34155
Strength average strong weak weak

Hybrid correlations coe�cients of Lower arm right during tennis forehand on capture

day one
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Although both methods do not correlate very good to the marker data, again, they

correlate good to each other.

9.2.5. Wrist right: Hybrid marker-Shape and hybrid IMU-Shape

Table 38: Spearman correlation of hybrid silhouette data: Wrist right
Method X Y Z total
marker-shape and marker, rs 0,29727 0,84979 0,46950 0,25099
Strength weak strong weak weak
IMU-Shape and marker, rs 0,06159 0,86811 0,94809 0,19655
Strength weak-none strong strong weak

Hybrid correlations coe�cients of Wrist right during tennis forehand on capture day

one

9.3. Golf and Tennis capture day two

As mentioned above, data from the IM-sensors compared to shape and markers did only

correlate on average or weak basis. Therefore a hybrid tracking including the IM-sensors

was chosen not to perform. Thus this section will only compare shape based data with

hybrid marker-shape data for the golf swing and the tennis backhand together.

9.3.1. Pelvis: Hybrid marker-Shape and marker for golf and tennis backhand

Table 39: Spearman correlation of hybrid silhouette data: Pelvis
Method X Y Z total
marker-shape and Shape golf, rs 0,90107 0,94820 0,97987 0,96017
Strength strong strong strong strong
marker-shape and Shape tennis, rs 0,94590 0,63015 0,42196 0,93797
Strength strong average weak strong

Hybrid correlations coe�cients of Thorax during tennis and golf on capture day two
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9.3.2. Thorax: Hybrid marker-Shape and marker for golf and tennis backhand

Table 40: Spearman correlation of hybrid silhouette data: Thorax
Method X Y Z total
marker-shape and Shape golf, rs 0,96669 0,74660 0,98014 0,97949
Strength strong average strong strong
marker-shape and Shape tennis, rs 0,97533 0,75056 0,94807 0,97601
Strength strong average strong strong

Hybrid correlations coe�cients of Thorax during tennis and golf on capture day two

9.3.3. Upper arm right: Hybrid marker-Shape and marker for golf and tennis

backhand

Table 41: Spearman correlation of hybrid silhouette data: Upper arm right
Method X Y Z total
marker-shape and Shape golf, rs 0,94671 0,99153 0,92270 0,97804
Strength strong strong strong strong
marker-shape and Shape tennis, rs 0,98543 0,97347 0,94491 0,99037
Strength strong strong strong strong

Hybrid correlations coe�cients of Upper arm right during tennis and golf on capture

day two

9.3.4. Lower arm right: Hybrid marker-Shape and marker for golf and tennis

backhand

Table 42: Spearman correlation of hybrid silhouette data: Lower arm right
Method X Y Z total
marker-shape and Shape golf, rs 0,81209 0,99895 0,92793 0,81326
Strength average strong strong average
marker-shape and Shape tennis, rs 0,97220 0,87030 0,82511 0,98877
Strength strong average average strong

Hybrid correlations coe�cients of Lower arm right during tennis and golf on capture

day two
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9.3.5. Wrist right: Hybrid marker-Shape and marker for golf and tennis

backhand

Table 43: Spearman correlation of hybrid silhouette data: Wrist right
Method X Y Z total
marker-shape and Shape golf, rs 0,835947 0,92654 0,77557 0,77378
Strength average strong average average
marker-shape and Shape tennis, rs 0,50830 0,01410 0,27456 0,60473
Strength average weak-none weak average

Hybrid correlations coe�cients of Wrist right during tennis and golf on capture day two

10. Discussion

This section will focus on the comparison of hybrid marker-shape data and hybrid IMU-

shape data from capture day one (each correlated to markers). Also the correlation of

both hybrid methods will be featured. In addition to that, hybrid marker-shape data

from both day one and two will be looked at. Like mentioned previously, there is no

data of any hybrid IMU-shape data from day two, therefore they will not be discussed

to any further detail.

One thing that comes straight to the mind is the fact, that the correlation data of

hybrid IMU data and hybrid marker data has strong values in both pelvis and thorax,

but also in the upper arm. Figures 27. and 28. show, that during the golf swing and

the tennis forehand of day one, hybrid IMU data and hybrid marker data is almost the

same. While Upper arm right and thorax / pelvis data correlates in strong values in

both sport movements, lower arm right and wrist have only strong-average and weak

correlations. That is due to the fact, that during normal Shape-tracking, both wrists

are locked and can not be moved in order to prevent incorrect wrist rotations. It was

proven in previous trackings, that the wrists track even worse, if they are unlocked. So

when this data is supported by marker data, it obviously looks di�erent from the original

data.

For the IM-sensor data the reason for weak correlations is di�erent. It was mentioned

before, that the sensors need an initializing pose in the neutral zero position. The

problem with this position was already mentioned, to be hard to �t the lower arms and

wrists in the actual position. So this might be an answer, why the solutions correlate

only average to weak. Another option is the fact, that especially during golf- and tennis-
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movements, both lower arms and wrist are located the furthest away from the original

calibrated space. This space is in the exact position, where the movement will happen to

prevent di�erences in the magnetic �eld and get as close to the exact data, as possible.

As lower arm and wrist are the furthest away, they might also be a victim to small

magnetic �eld changes and the data might not be exact anymore. However this is only

an assumption based on di�erent measurements.

Figure 27: Total correlation coe�cients from hybrid-marker and -imu data during golf
swing on day one

Figure 28: Total correlation coe�cients from hybrid-marker and -imu data during tennis
forehand on day one

When comparing both hybrid-methods with each other, the correlations are strong

in almost every value. Again a problem is the wrist, that sometimes for no particular

reason the IM-sensor hybrid version correlates better than the marker hybrid method.
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Therefore for both the tennis and the golf movement have weak correlations concerning

the wrist. Figure 29. compares golf swing and tennis forehand.

Figure 29: Total correlation coe�cients from hybrid-marker and -imu data during golf
and tennis forehand on day one

10.1. Comparison of hybrid marker-shape data of capture day

two

Although the sensors did not give any reasonable data for capture day two, there are

some data to be compared to when talking about hybrid tracking in Shape: the hybrid-

marker shape data. In this subsection, both total correlation coe�cients from the golf

swing and the tennis forehand / backhand of day one and two can be looked at, to

see in which cases there is consistency and in which there is not. Again pelvis, thorax

and upper arm right have strong correlations during both movements, regardless which

movement was performed. For the golf swing, the data was average-strong and strong

in all cases during capture day two, while during day one, the lower-arm right was

correlating on an average-weak value. This could be, because there were some mistakes

performed during marker tracking or some markers not tracked the right way.

For the tennis forehand and backhand again the data from captured day two is better

in all segments compared to day one. Like during the golf-swing, the tennis movement

might not have been tracked perfectly or some mistakes performed during automatic

tracking. In addition to that, there is another theory, why the correlations in wrist and

lower arm right are only average and weak. The theory is, that during both captures two

di�erent kind of movements were performed, the forehand and the backhand. The theory

now is, that during the forehand (especially during the reach back), not all markers could
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10. Discussion

be seen in two cameras and had to be splined to get 3D-data during every single frame.

During the backhand though, it was easier to track the hand with the racket in always

at least two cameras and produce more accurate data. Figures 30. and 31. show the

results, discussed in this subsetion.

Figure 30: Total correlation coe�cients from hybrid-marker data during golf swing day
one and two

Figure 31: Total correlation coe�cients from hybrid-marker data during tennis forehand
/ backhand on day one and two
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Part IV.

Conclusion

To conclude this thesis, several points have to be taken into consideration.

To begin with, the original aim of the thesis was to check, if and how IM-sensors

can be integrated into marker-based and marker-less 3D-motion tracking. This method

was then validated by two di�erent sports-movements: a golf swing and a tennis fore-

hand/backhand. Both movements were recorded on di�erent dates to see, if the acquired

data is consistent.

The aim to integrate the sensors into marker-based and marker-less 3D-tracking was

achieved by �nding a solution to various sensor-based problems. Those included di�erent

unde�nable Z-o�sets and coordinate-transformations from IM-sensor coordinate systems

into Simi's software Motion and further-on into Shape. The inconsistency of the o�sets

due to the magnetic �eld could not be solved, but as the movements were recorded in

the same place, no solution was needed for this particular set-up. Other movements

such as running or in general movements through a larger space will face this problem

nevertheless.

The validation of the sensors' data-output resulted in two di�erent �ndings.

1. Data from the capture of day one shows, that if the sensors work �ne, the sensor

data can be taken to replace marker data and therefore use their rotations to

enhance marker-less silhouette tracking. Also the sensors can be used solely to

get data from certain movements without camera-based tracking. Both golf and

tennis movements have average-strong to strong correlations.

2. Data from the capture of day two shows, that although the set-up remained the

same, good results are not consistent. Weak to no correlations of IM-sensors to

markers show, that the sensors do not always work �ne and therefore were not

integrated into Shape during capture two. This resulted in the lack of data to

compare hybrid marker-Shape data with hybrid IMU-Shape data. Reasons for

this bad behavior is likely to be the inconsistency of the magnetic �eld, which

changes are hardly impossible to measure in every-day laboratory set-ups.

Summing up the conclusion of the thesis is split in half. On one hand a possible

integration into marker-based and marker-less 3D-tracking was found and if the sensors

work �ne, acquired data can be used to support silhouette-tracking. On the other hand,
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if the sensors do not work �ne, it is impossible to integrate the sensors, as the data

is not correlating to the marker- or shape-data. One possible cause it the inconsistent

magnetic �eld, which can not be determined and then eradicated in every-day captures.

Captures with IM-sensors have to be treated with suspicion, if exact data is required.
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